Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Foods ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2166364

ABSTRACT

Global food production is facing increasing uncertainties under climate change and the coronavirus pandemic, provoking challenges and severe concerns to national food security. The role of global agricultural trade in bridging the imbalance between food supply and demand has come to the fore. However, the impact of multifaceted and dynamic factors, such as trade policies, national relations, and epidemics, on the stability of the agricultural trade network (ATN) needs to be better addressed. Quantitatively, this study estimated grouping characteristics and network stability by analyzing the changing global ATN from 1986 to 2018. We found that the evolution of global agricultural trade communities has gone through four stages: the dominance of the US-Asian community, the rise of the European-African community, the formation of tri-pillar communities, and the development of a multipolar community with a more complex structure. Despite witnessing a progressive increase in the nodal stability of the global ATN during the decades, particular gaps can still be found in stability across countries. Specifically, the European community achieved stability of 0.49 and its trade relations were effectively secured. Meanwhile, the remaining leading communities' stability shows a stable and upward trend, albeit with more significant challenges in trade relations among some of them. Therefore, how to guarantee the stability of trade relations and strengthen the global ATN to resist external shocks has become an essential question to safeguard global food security.

2.
Foods ; 11(11)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1896833

ABSTRACT

The transformation of dietary structure brought about by economic development in populous countries is expected to trigger an increase in grain demand, which will put enormous pressure on the grain supply in these nations and even globally. We simulated nine demand scenarios for 2020-2050 based on China's dataset for 15 kinds of grains from 1961-2018. The results show that the maximum difference between the predicted grain demand is 323.8 Mt, equal to the total grain consumption of approximately 600 million Chinese people in one year. To capture which demand scenarios will be met when grain productivity gradually improves within reasonable ranges, we present three projections from the production side. In particular, Projection 1 (P1), which maintains productivity at the current level, only fulfills the projected demand for Scenarios 1-LL, 2-LM, 4-ML, and 7-HL and falls short of the maximum value (Scenario 9-HH) by 117 Mt, which requires an additional 250,000 ha of arable land resources to fill the gap. After raising the preset value of grain yield, the productivity of Projection 2 in turn satisfies the demand scenario 5-MM. When both set variables (grain yields and arable area) increase simultaneously, the output of Projection 3 increases by 15.3% over P1. However, it still lags behind the demand of 68 million tons in Scenario 9-HH, thus implying uncertainty in China's vision of meeting the goal of 95% grain self-sufficiency. Rather than pursuing a single outcome, we discuss multiple possibilities for China's future grain balance and emphasize the adjusting and compensating role of grain trade and storage in the whole system. Ultimately, this paper calls for a better understanding of the supply-demand gap therein and its future trends to support national grain security as well as global sustainable food policies.

SELECTION OF CITATIONS
SEARCH DETAIL